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Primary instability of the three-dimensional boundary layer on a rotating disk 
introduces periodic modulation of the mean flow in the form of stationary crossflow 
vortices. Here we study the stability of this modulated mean flow with respect to 
secondary disturbances. These secondary disturbances are found to have quite large 
growth rates compared to primary disturbances. Both fundamental and sub- 
harmonic resonance cases are considered and their corresponding results indicate 
that the growth rate and the frequency of the secondary instability are insensitive 
to the exact nature of the resonance condition. The threshold primary stationary 
crossflow vortex amplitude for secondary instability found in this three-dimensional 
incompressible boundary layer is significantly larger than that for a two-dimensional 
boundary layer which is subjected to Tollmien-Schlichting instability. The secondary 
instability results in a pair of travelling counter-rotating vortices, tilted up and 
oriented at an angle to the primary stationary crossflow vortices. The computed 
velocity signals and flow visualization, evaluated based on this secondary disturbance 
structure, are compared with experimental results. 

1. Introduction 
The laminar-turbulent transition process in three-dimensional boundary layers is 

of fundamental importance in fluid dynamics, especially in the design of swept wings. 
However, in comparison with the theoretical and experimental investigations of the 
transitional flow structures in two-dimensional boundary layers, little is known 
about the transition phenomenon in three-dimensional flows. In two-dimensional 
boundary layers the primary Tollmien-Schlichting (TS) instability is followed by 
pronounced K- (Klebanoff, Tidstrom & Sargent 1962) or C- (Craik 1971) and H-type 
(Herbert 1984 ; Kachanov & Levchenko 1984) secondary instability, which then 
leads to a turbulent regime through a succession of spike stages. Using Floquet 
theory, Herbert (1984, 1985, 1988) was able to explain the transition process through 
the secondary instability stage. Further details of the eventual transition process are 
well documented both by careful experiments and by direct numerical simulations 
(Kleiser & Laurien 1985; Nishioka, Asai & Iida 1981). In contrast, in a three- 
dimensional boundary layer only the linear stage of the disturbance growth has been 
successfully described by the linear stability theory (Gregory, Stuart & Walker 1955 ; 
Mack 1984; Malik 1986; Dallmann & Bieler 1987). In  this paper we will investigate 
the secondary stages of the transition process in a three-dimensional rotating-disk 
boundary layer. 

Owing to its simplicity, flow over a rotating disk is often studied to understand the 
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instability mechanisms present in a three-dimensional boundary layer (Gregory et al. 
1955; Malik, Wilkinson & Orszag 1981 ; Kohama 1984, 1987; Kobayashi, Kohama & 
Takamadate 1980). Unlike the three-dimensional boundary layer on a swept wing, 
the exact solution to the Navier-Stokes equations for the steady laminar flow 
(KarmBn 1940) on a rotating disk is self-similar and is not complicated by parameters 
such as pressure gradient and sweep angle. Therefore, the rotating-disk flow is 
particularly suited to theoretical stability analysis. Moreover, the inflexional 
crossflow velocity profile, common to both the rotating disk and swept wing, is 
subject to crossflow instability. Recently Kohama, Saric & Hoos (1991) have 
performed experiments in a swept-wing boundary layer, where they observe flow 
structures due to secondary disturbances which are qualitatively similar in nature to 
those observed by Kohama (1984, and 1987) on a rotating disk. A detailed study of 
the secondary instability mechanism and the eventual breakdown process in a 
rotating-disk boundary layer should then improve our understanding of the 
transition process on a swept wing, when crossflow vortices play the primary role in 
the transition process. 

Wilkinson & Malik's (1983) stability experiments on a rotating-disk flow traced the 
origin of the primary stationary disturbances, observed in experiments as crossflow 
vortices, to isolated roughness sites. The wave patterns originating from these 
roughness sites spread and merge downstream to form approximately thirty vortices 
whose wave vector is inclined at an angle of about 13" to the radial direction. Mack 
(1985) used linear theory to simulate the roughness-induced wave pattern and 
compared the results with those of Wilkinson & Malik (1983). These studies clearly 
indicated that the stationary crossflow vortices originated a t  isolated roughness 
sites. These sites provide streamwise vorticity which is then amplified by the 
crossflow instability mechanism. Recent experiments performed by W. Saric (private 
communication) a t  Arizona State University, on a swept-wing boundary layer, also 
suggest that the origin of stationary crossflow disturbances is associated with minute 
roughness sites near the wing leading edge. In his experiment, the transition location 
moved significantly downstream when the leading-edge region was polished. 

In addition to this stationary crossflow disturbance, travelling crossflow 
disturbances may also be amplified according to linear stability theory. Apart from 
the inflexional stationary and unsteady crossflow vortices, there are also growing 
type-I1 disturbances (Faller 1963; Faller & Kaylor 1966; Mack 1985; Balakumar & 
Malik 1990) induced by the Coriolis effect. Although the critical Reynolds number for 
these modes is lower than that for the inflexional modes, the growth rate associated 
with these type-I1 modes is small and therefore these modes in general are not 
expected to play a major role in the overall transition process. In any case, the 
present investigation is limited to the secondary instability of stationary crossflow. 

Flow visualizations on a rotating disk by Kohama (1984) clearly demonstrated the 
presence of a distinct secondary instability of primary stationary crossflow vortices. 
Based on the smoke flow pattern, Kohama conjectured that the secondary instability 
takes the form of ring-like co-rotating vortices appearing on the surface of each 
stationary primary vortex. His photographs also indicate a strong secondary 
instability and a rapid transition to turbulence. The presence of secondary instability 
has also been observed in the hot-wire measurements (Wilkinson & Malik 1983) by 
the appearance of kinks in otherwise periodic azimuthal velocity signals. Other 
possible transition scenarios, such as transition through spectral broadening due to 
nonlinear interaction of two or more primary instabilities cannot be ruled out, 
although this has not been observed clearly in experiments. 
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The overall objectives of this paper are to address the following key issues in a 
three-dimensional rotating-disk boundary layer : 

(i) parametric dependence of the secondary disturbance on stationary primary 
disturbance amplitude, Reynolds number and the resonance condition (fundamental 
vs. sub-harmonic) ; 

(ii) vortical structure of the secondary disturbance and its relevance to the 
secondary disturbances observed in flow visualizations ; 

(iii) qualitative and quantitative nonlinear effects of fine-amplitude primary 
disturbances on secondary instability. 

2. Mean flow and primary disturbance 
Consider a three-dimensional boundary-layer flow of an incompressible fluid of 

density p and kinematic viscosity v on an infinite circular disk rotating a t  a constant 
angular velocity 52. The governing equations for this flow are the Navier-Stokes 
equations written in a rotating frame of reference : 

(1)  

v*.u* = 0, (2) 

ur", + u* .  v*u* = - 2 8  x u* - l/pV*p* + vv*2u* 

and the incompressibility condition 

where * represents dimensional quantities. An exact solution for the steady laminar 
mean flow (K&rmBn 1940) is obtained by setting 

u* = r*Qu,(z), w* = r*Rw,(z), 

w* = (vL2)~wo(z), p* = pv52po(z), (3) 
where z = z*(Q/v)+ is the non-dimensionalized wall normal coordinate. 

For sufficiently large Reynolds number, defined as R = re* (52/v)i ( r t  is the radial 
location where the primary instability analysis is performed), primary instability of 
the laminar mean flow can occur in the form of crossflow vortices. Defining T ~ S Z  as 
the reference velocity, S = (v/L2); as the reference length and prZ2Q2 as the reference 
pressure, the total instantaneous non-dimensional velocities u, w, w and pressure p 
can be written as 

u(r, $, z, t)  = r/Ru,(z) +ul(z) exp [i(al r+P,R$-w,t)] + c.c., 

w(r, $ ,z , t )  = r/Rw,(z)+w,(z)exp[i(a,r+~,R$-w,t)]+c.c., 
w(r, $,z , t )  = l/Rw,(z)+w,(z)exp [i(a,r+/31Rq5-wlt)]+c.c. ,  

p(r,$,z,t) = 1/Rp,(z)+p,(z)exp [i(a,r+P,R$-w,t)I+c.c., 

where C.C. denotes the complex conjugate and r = r* (SZ/v)i is the non-dimensional 
radius. In  the above equation a,, /3, and w, = (wlrrwli)  are the radial wavenumber, 
azimuthal wavenumber and complex temporal eigenvalue (frequency, growth rate) 
of the primary disturbance, respectively. Figure 1 shows the local orthogonal 
coordinates (z, y, z) aligned along the primary vortices in relation to the cylindrical 
coordinates ( r ,  $ , z ) .  The velocity components ti, ti, iij in the vortex-oriented coordinate 
system, defined as 

] (4) 

a = ucose+vsins, B =  usins-vcose, iij = w, (5 )  
can now be written from (4) as 

ti(z, z, t )  = r/R G,(z) + a,@) exp [ i ( q  z - w1 t ) ]  + c.c., 
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FIGURE 1. Schematic of the rotating disk with the cylindrical ( T , $ , z )  and crossflow (z,y,z) 
coordinates marked. The crossflow vortices are indicated by the dark patch. 

with similar equations for V, i~ and p .  I n  (6) the overall primary wavenumber q and 
wave angle E are given by 

5 = ( a ; + ~ $ ,  E = arctan ( ~ , / a , ) .  (7) 

The appropriate boundary conditions for the primary eigenfunctions are 

and 

Substituting the above equations in the non-dimensional form of the Navier-Stokes 
equations, an eigenvalue problem for the normal modes can be obtained after 
linearization. The eigenvalue problem is solved using a Chebyshev collocation 
method with the physical domain z E [0, z,,,] mapped on to  a computational domain 
7 ~ [ - 1 , 1 ]  by 

T i  = (1 -cl) (1;3-c2 72 +c2)  +cl  y, 

c1 = tan30°, c2 = 0.5, c3 = 1.8, zmax = 20. 

Artificial pressure boundary conditions are avoided by using a staggered mesh in the 
vertical direction and N ,  = 128 Gauss-Lobatto (GL) points are used to resolve the 
computational domain. This results in a generalized eigenvalue problem of the form 

Aq, = W 1  6% 

q, = (cl, u1, wl) a t  N, GL points (10) 

lP l  a t  (N,- 1) Gauss points, 

where the matrices A and B are of size (W,- 1) x (W,- 1). 
Figures 2 and 3 show contour plots of growth rate and frequency of the primary 

instability in the (a1, P1)-plane for R = 450. In  these figures the radial and azimuthal 
wavenumbers are normalized by als = 0.328 and PlS = 0.0699, wavenumber com- 
ponents corresponding to the most-amplified stationary mode. The overall most- 
amplified disturbance is a travelling mode with an approximate negative frequency 
of - 7.852, and its radial and azimuthal wavenumbers are approximately a,,, 1.5B,,. 
Corresponding contour plots for higher Reynolds numbers are qualitatively similar, 
but have a larger domain of amplified disturbance. Although the temporal growth 
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FIQURE 2. Contour plot of primary instability growth rate in the wavenumber (al, P1)-plane for 
R = 450. Here the radial and azimuthal wavenumbers are normalized by (als = 0.328, P18 = 0.0699), 
the wavenumber components corresponding to the most-amplified stationary mode. The most- 
amplified primary disturbance corresponds to a wavenumber of approximately (a,,, l.5Pls). 
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FIGURE 3. Contour plot of non-dimensional frequency of the primary instability in the wavenumber 
(a,,P,)-plane for R = 450. Here the radial and azimuthal wavenumbers are normalized by 
(als = 0.328, PIS = 0.0699). The most-amplified disturbance is a travelling mode with a negative 
frequency of - 7.88. 

rates of the most-amplified stationary and non-stationary disturbances increase with 
Reynolds number, the wavenumbers corresponding to these most-amplified 
disturbances remain nearly the same. For further details on the primary instability 
and its asymptotic structure, the reader is referred to Malik (1986), Balakumar & 
Malik (1990) and Hall (1986). 
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3. Secondary instability analysis 
The basic state for the secondary instability analysis is given by a finite-amplitude 

primary disturbance superimposed on the mean flow. This state is periodic both in 
space (x) and time, and in a frame of reference (x’ = z- ( w J q t ) )  moving with the 
phase speed of the primary disturbance (for a stationary primary disturbance to be 
considered here this phase speed will be identically zero), the base flow becomes 
stationary and spatially periodic. The normal mode ansatz for the linear stability of 
this flow to small three-dimensional disturbances can be performed by writing the 
total-flow variables in the following form (Herbert 1984, 1985) 

a(x’, y, x ,  t )  = r / R  E ~ ( Z )  + el{al(z) exp [iqz’] + c.c.} 
a3 + %2n(2)exp[i(n-cr)i5;z’+i(P2y-~2t)], (11) 

where P2 is the secondary wavenumber along the crossflow vortex axis y, and 
(wZr,wZi) are the frequency and growth rate of the secondary disturbance in the 
moving coordinate. cr is the detuning parameter ; cr = 0 corresponds to a fundamental 
secondary disturbance which is periodic over one crossflow wavelength and cr = 
corresponds to a sub-harmonic secondary disturbance which is periodic over two 
primary crossflow vortices. All other values of CT, 0 < cr < 4, correspond to 
combination resonance. In order to define the primary amplitude el, we use the 
following normalization for the primary eigenfunction : 

n--m 

(12) 
1 

Iw,(z) exp ( iqz)  + c.c.I2dz = max Iw,(z)l = -, max [zr’” I: O C r C m  d2 O $ Z Q r n  

so that el corresponds to the maximum azimuthal root-mean-square fluctuation of 
the base flow (mean flow+primary) as measured in an experiment. 

The use of constant amplitude e, in Floquet analysis for the secondary instability 
is strictly valid only when a nonlinear equilibrium state exists for the primary 
instability, as in the case of a Poiseuille flow. I n  order to make the theory applicable 
to cases where no such equilibrium state exists for the primary disturbance, as in the 
present case of rotating-disk flow, the following approximations have to be 
introduced. The first approximation is the quasi-stationary assumption, where the 
small growth rate of the primary disturbance is neglected in comparison with the 
relatively strong secondary growth rate. This allows one to ignore the change in the 
primary amplitude during the short interval of rapid secondary growth. The second 
approximation is the shape assumption of constructing the base flow by a simple 
superposition of steady mean flow and a finite-amplitude primary eigenfunction. At 
large primary amplitudes the effect of nonlinear interaction on mean flow and 
primary distortion can be significant. Then one needs to include in the analysis these 
nonlinear distortions, along with the effect of higher harmonics of the primary 
disturbance, for accurate calculation of the secondary instability. But for small 
values of el, the effect of nonlinearity on this shape assumption is negligible. We will 
discuss this effect further in 56 below. 

Substitution of (11) into the Navier-Stokes equation, along with the boundary 
conditions 

and 

yields a Floquet system of stability equations with periodic coefficients. As discussed 
before, depending on the value of the detuning parameter, this system can allow 
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Modes nlrn2 N, zmax 0 2  

3 -1, l  33 20.0 0.3874 0.0077 
5 -2,2 33 20.0 0.3812 0.0190 
7 - 3,3 33 20.0 0.3806 0.0221 
9 -4,4 33 20.0 0.3805 0.0222 
7 -3,3 49 20.0 0.3806 0.0221 
7 -3,3 33 40.0 0.3805 0.0223 
7 -3,3 49 40.0 0.3806 0.0221 

TABLE 1 .  Effect of Fourier representation and grid resolution 

different types of resonance. The resulting equations can be linearized by neglecting 
nonlinear terms involving secondary eigenfunction, to obtain a linear temporal 
eigenvalue problem for the complex eigenvalue w2. (Note that since the shape 
assumption ignores nonlinear self-interaction of the primary disturbance, terms of 
the order e; are also neglected. Therefore the only quadratic terms retained in the 
system are the interaction terms between mean flow and secondary, and primary and 
secondary disturbances.) The eigenvalue problem is solved using a Chebyshev 
collocation method with the physical domain Z E  [0, z,,,] mapped onto a com- 
putational domain 7 E [ - 1,1] by (lo), and the solution procedure is the same as that 
used for the primary instability. As a numerical approximation, the z’ dependence 
of the secondary disturbance in (1  1) can be represented by a finite Fourier series by 
replacing the infinite summation by clL,l. Table 1 shows the effect of this truncation 
in the Fourier representation and the vertical grid resolution on the convergence of 
the temporal eigenvalue for the fundamental secondary case with 

a, = a,,, p1 = pis, R = 500, el = 0.12, p2 = 0.65. 

Based on this table, all further calculations use a seven-mode expansion for the 
fundamental resonance case with N, = 33 and z,,, = 20. Similarly, a six-mode 
expansion with n,,n2 = -2 ,3  is used for the sub-harmonic case. A choice of a 
Dirichlet or asymptotic boundary condition at  the finite outer boundary did not alter 
the overall results. 

Table 1 clearly shows that, unlike that for two-dimensional boundary layers, a 
minimum three-mode Fourier expansion (n,, n2 = - 1 , l )  for the fundamental case is 
not adequate to capture the secondary instability. In  order to explain this increase 
in the resolution requirement, the three components of the velocity eigenfunctions 
for the seven-mode expansion are shown in figure 4(a-c). 

The azimuthal velocity eigenfunction corresponding to n = 1 is the dominant 
mode and is normalized to a value of 4 2 .  With this normalization, the relative 
amplitudes of the seven azimuthal velocity eigenfunctions (nl, n2 = - 3,3) are [0.072, 
0.150,0.367,0.824, 1.414, 1.027,0.346]. In comparison, the relative amplitudes of the 
five streamwise velocity eigenfunctions (nl, n2 = -2,2) for the Blasius boundary 
layer are [0.064, 0.848, 1.414, 0.848, 0.0641 (Herbert, Bertolotti & Santos 1985). In 
contrast to the secondary expansion for a two-dimensional TS wave in a two- 
dimensional boundary layer, the secondary expansion for the rotating-disk case is 
not symmetric about the dominant harmonic, indicating the absence of a left-right 
symmetry about the crossflow vortex. For the three-dimensional rotating-disk 
boundary layer, n = 0 is not the dominant harmonic and the convergence of the 
Fourier expansion is not as rapid. (Of course, by choosing a value of cr = - 1 the most 
amplified mode can be shifted to the n = 0 term of the expansion.) 
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FIGURE 4. Magnitude of the velocity eigenfunctions of the secondary instability for the fundamental 
resonance case: (a) radial component, (b) azimuthal component and ( c )  component normal to the 
disk. A seven-mode expansion (n = -3, ..., 3), with Nz = 33 and zmB, = 20 used in this calculation. 
The azimuthal velocity eigenfunction corresponding to  n = 1 is the dominant mode and is 
normalized to a value of 4 2 .  

4. Secondary instability results 
Let us consider both fundamental and sub-harmonic results corresponding to the 

most-amplified stationary primary disturbance (als, PI,) and let the Reynolds 
number be 500, unless otherwise stated. Figure 5 shows the fundamental secondary 
growth rate as a function of the secondary wavenumber along the crossflow vortex 
(P2) a t  a primary amplitude of 12%. For comparison, the primary growth rate is 
markedly by a dashed line. Although multiple branches of positive growth rate are 
present, only one branch shows a significantly larger growth rate than the primary. 
This will be the only branch to be considered for further discussion. A simple estimate 
based on the experimental photographs of secondary instability (Kohama 1984) 
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FIQURE 5. Secondary instability growth rate plotted against secondary wavenumber for the 
fundamental resonance case; R = 500, a, = a,,, p, = PIS, and el = 12%. For comparison, the 
primary growth rate is marked by a dashed line. Multiple branches of positive growth rate are 
present, but only one mode shows about four times the primary growth rate. The non-dimensional 
frequency uZr, for this fundamental resonance case is represented by x . 
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FIGURE 6. Secondary disturbance growth rate plotted against secondary wavenumber for the 
fundamental resonance case; R = 500, a, = als, /3, = PIS, and E, = 6%. For comparison, the 
primary growth rate is marked by a dashed line. Multiple branches of positive growth rate are 
present, but at this lower primary amplitude of 6%, all these branches have smaller growth rate 
than the primary disturbance. 

shows that the secondary disturbance is of fundamental resonance type with a 
wavenumber Pz comparable with the computed value of bz = 0.65 corresponding to 
the maximum secondary growth rate. The secondary instability has growth rate 
three or more times that of the primary over more than half a decade of wavenumber. 
The corresponding non-dimensional frequency, wZr shown in figure 5 as crosses, 
indicates an almost linear dependence except a t  small values of secondary 
wavenumber. 
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FIQURE 7. Secondary instability growth rate against primary disturbance amplitude for the 
fundamental resonance case ; R = 500 and the wavenumber components of the primary disturbance 
are (als, /Ils). Results for four different secondary wavenumbers are presented: A, pz = 0.3; 0 ,  

= 0.65; 0, pZ = 0.8; 0 ,  pz = 1.0. A threshold primary amplitude of approximately 9% is 
apparent. 

A plot of growth rate against secondary wavenumber at 6 % primary amplitude 
(figure 6) shows the absence of the secondary instability a t  low levels of primary 
disturbance (some of the other branches with relatively low growth rate are present 
a t  this amplitude). This strong dependence of secondary growth rate on primary 
amplitude is illustrated in figure 7 ,  where wZi is plotted against el a t  four different 
secondary wavenumbers. A threshold primary amplitude of about 9 % is apparent, 
and above this threshold amplitude the secondary growth rate rapidly increases with 
el. According to  primary instability theory, disturbances at wavenumbers cor- 
responding to these secondary modes are strongly damped, therefore significant 
modulation of the steady mean flow by primary disturbance is required. Compared 
to a threshold amplitude of only a few tenths of a percent needed for secondary 
instability in two-dimensional boundary-layer flows, a stronger primary disturbance 
is required for secondary instability in the three-dimensional rotating-disk boundary 
layer. From figure 7 it can be inferred that as el increases, the secondary wavenumber 
corresponding to  the maximum growth rate also increases. In  contrast, figure 8 
shows the weak dependence of secondary frequency on primary amplitude. 

The effect of Reynolds number on secondary instability is analysed by plotting 
growth rate against wavenumber for five different values of R at  12% primary 
amplitude (figure 9). A systematic increase in the maximum growth rate and an 
associated increase in the wavenumber bandwidth of growing modes- is clear. 
Moreover, since the group velocity of the primary disturbance has a positive radial 
component, the primary disturbance grows radially and therefore the primary 
amplitude increases with Reynolds number. This further increases the dependence of 
secondary growth rate on R. On the other hand, the effect of Reynolds number on 
the non-dimensional secondary frequency (not shown here) is surprisingly negligible. 
This in turn indicates a linear dependence of dimensional frequency on Reynolds 
number, since our earlier choice of length and velocity scales yields a timescale of 
1/RSZ. For example, for the experimental conditions of Wilkinson & Malik (1983) 
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FIQURE 8. The weak dependence of the non-dimensional frequency of the secondary instability on 
the primary disturbance amplitude for the fundamental resonance case is shown; R = 500 and the 
wavenumber components of the primary disturbance are (a,,, PIS). Results for four different 
secondary wavenumbers are presented, symbols as in figure 7. 

0.03 

0.02 

W2I 

0.01 

0 0.5 1 .o 1.5 

BP 
FIGURE 9. Effect of Reynolds number on the variation of secondary growth rate with secondary 
wavenumber. Primary disturbance amplitude is 12 % and the wavenumber components of the 
primary disturbance are (a,,,/?ls). Results for five different Reynolds numbers are shown: A, 
R = 420; 0,  R = 460; 0, R = 500; 0 ,  R = 540; ., R = 580. Maximum growth rate and secondary 
wavenumber corresponding to the maximum growth rate increase with Reynolds number. 

(a - 16 Hz) the dimensional frequency of a secondary disturbance with p2 = 0.65 a t  
R = 500 will be approximately 3 kHz. The frequency of the secondary disturbance 
depends upon the flow conditions. Kohama et al. (1991) observed the secondary 
instability spectral peak at 3.5 kHz in their swept-wing experiment. Apparently, a 
related secondary instability was observed earlier by Poll (1985) in his swept- 
cylinder experiment. A plot of growth rate against primary amplitude for the five 
Reynolds numbers with B2 = 0.65, figure 10, shows a definite decrease in the 
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FIQURE 10. Effect of Reynolds number on the variation of secondary growth rate with primary 
disturbance amplitude. Secondary disturbance wavenumber, p, = 0.65, and the wavenumber 
components of the primary disturbance are (als, p,,). Results for five different Reynolds numbers 
are shown, symbols as in figure 9. A definite decrease in the threshold amplitude with increasing 
R can be observed. 
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FIQURE 11. Sensitivity of secondary growth rate to changes in the primary instability mode. 
Growth rate against secondary wavenumber is plotted for five different stationary primary 
disturbances: 0,  (al,/31,wl,) = (0.75aIs, 0.83pIs, 0.0039); 0,  (l.Oals, Lopls, 0.0051); 0, (1.25a1,, 
1.20/3,,, 0.0049) ; 0 ,  (1.5alS, 1.41pIs, 0.0036) ; a, (1.885aIs, 1.8pl,, 0.0001) ;Re = 500 and the primary 
disturbance amplitude is 12 %. 

threshold amplitude with increasing R. For example the threshold amplitude 
decreases by about 13 YO for a Reynolds-number increase from 420 to 580. However, 
we note that transition takes place a t  a Reynolds number of about 530. 

In  order to study the sensitivity of secondary instability to changes in the 
stationary primary disturbance mode, consider figure 11, where fundamental 
secondary growth rate is plotted against wavenumber for five different stationary 
primary disturbances (al, p,, oli) of (0.75a1,, 0.83p1,, 0.0039), (a,,, pis, 0.0051), 
i.25a1,, 1.20p1,, 0.0049), (1.5a1,, 1.41Pls, 0.0036) and (1.885a1,, 1.8pl,, 0.OOOl) a t  12% 
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FIGURE 12. Effect of primary disturbance amplitude on secondary disturbance growth rate. 
Growth rate is plotted for five different stationary primary disturbances: 0,  (al, PI, q,) = (0.75a1,, 
0.83P1,,0.0039); 0,  (l.Oals, l.0Pls,0.0051); 0, (1.25a1,, 1.20/3,,,0.0049); 0 ,  (1.5a18, 1.41~1,,0.0036); ., (1.885a1,, 1.8&, 0.0001); R = 500 and the secondary disturbance wavenumber 8, = 0.65. 

primary amplitude in each case. An increase in both the secondary growth rate and 
unstable band of wavenumbers is seen with an increase in the wavenumber of the 
stationary primary disturbance. Moreover, the wavenumber corresponding to the 
most-amplified secondary disturbance increases ; for example the most-amplified 
stationary primary disturbance (a, = uls, /3, = pis, wli = 0.0051) shows maximum 
secondary growth at pz = 0.65, whereas the almost neutral stationary primary 
(a, = 1.885a1,, /3, = 1.8pls, wli = 0.0001) shows maximum secondary growth a t  

In figure 12 the effect of primary amplitude on secondary growth rate is considered 
for a fixed secondary wavenumber BZ=O.65, but for five different primary 
wavenumbers. A significant decrease in the threshold amplitude can be seen; for 
example an increase in the primary wavenumber from (als, /Ils) to ( 1.885a1,, 1.8/3,,) 
decreases the threshold primary amplitude from 9.0% to 6.6%. The threshold 
amplitudes corresponding to their respective most-amplified secondary wave- 
numbers are higher than that corresponding to the fixed pz = 0.65 chosen in figure 
12. For example for the case of a, = 1.885a1,, p1 = 1.8plS, the threshold amplitude at 
the most amplified wavenumber p2 = 1.1 is 7 %, whereas the threshold amplitude at 
pZ = 0.65 is 6.6%. This is because the wavenumber corresponding to the most- 
amplified secondary disturbance increases as the primary amplitude increases above 
the threshold amplitude. The threshold amplitudes for the five different stationary 
primary disturbances considered in figure 12 are therefore close to their corresponding 
absolute minimum threshold amplitude. 

Although primary instabilities with large zq are increasingly susceptible to 
secondary instability, it should be borne in mind that such small-wavelength 
stationary crossflow vortices are not the most amplified primary disturbances. Since 
the threshold amplitude for secondary growth corresponding to the near-neutral 
primary disturbance (a, = 1.885a1,, /3, = 1.8/3,,) is significant, it is reasonable to 
conclude that dominant secondary disturbance is likely to occur only for stationary 
primary disturbances close to the most-amplitude stationary primary disturbance. 
Again the effect of primary wavenumber on secondary frequency is negligible. 

pz = 1.1. 
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FIQWRE 13. Secondary disturbance growth rate plotted against secondary wavenumber for the 
subharmonic resonance case; R = 500, a1 = a,,, B1 = PIS, and E~ = 12%. For comparison, the 
primary growth rate is marked by a dashed line. Multiple branches of positive growth rate are 
present, but only one mode shows almost four times the primary growth rate. The non-dimensional 
frequency, wZr, for this sub-harmonic resonance case is represented by x . 

Figure 13 shows the growth rate of sub-harmonic secondary instability as a 
function of wavenumber a t  12 % primary amplitude. Here again multiple branches 
of positive growth rate can be observed. Except for a very small decrease in the 
maximum growth rate, the growth rate of the dominant branch is very similar to 
that for the fundamental secondary case (figure 5). Variations in the secondary 
growth rate and frequency with primary amplitude and Reynolds number behave in 
the same way as the fundamental instability. In a two-dimensional boundary layer 
the threshold primary amplitude for the sub-harmonic resonance was found to be 
smaller than that for the fundamental resonance (Herbert 1984, 1985, 1988). For the 
rotating-disk flow the subharmonic threshold amplitude is slightly larger than that 
for the fundamental resonance. Thus a clear selection mechanism between 
fundamental and sub-harmonic cases is not present. 

5. Comparison with experiments 
I n  order to compare results with experimental flow visualizations and hot-wire 

measurements, a theoretical flow field can be constructed from (11) with an 
amplitude e2 for the secondary velocity. An unambiguous definition for the 
secondary amplitude results from the following normalization for the secondary 
eigenfunction : 

1 
max max I v ~ ~ ( z ) I  = -. 

- m C n $ m O C z Q m  d2 
Figure 14(a) shows the azimuthal velocity computed in the laboratory frame of 
reference with el = 12% and e2 = 5 %  for the fundamental resonance case a t  five 
different heights from the disk surface. Here the temporal velocity signal is plotted 
against angle of rotation for comparison with Wilkinson & Malik’s (1983) hot-wire 
measurements. The experimental result was averaged over 50 time records of the 
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FIGURE 14. (a) Computed azimuthal velocity as a function of the angle of rotation at five different 
heights from the disk. This velocity signal is calculated based on a superposition of the mean flow 
with 12 YO primary disturbance amplitude and 5% secondary disturbance amplitude. The primary 
and secondary disturbances are computed at R = 500. The wavenumber components of the 
primary disturbance are u1 = a18, PI = Pis, and the secondary disturbance wavenumber, PZ = 0.45. 
( b )  Experimental azimuthal velocity signal (Wilkinson t Malik 1983) measured at z = 1.9; R 
corresponding to the radial location of the experimental measurement is 512. 

velocity signal with each record one disk rotation period in length. Therefore to 
obtain a secondary disturbance, a fundamental secondary disturbance with a 
wavenumber of p2 = 0.45 was chosen in the computation. Comparing the computed 
velocity signal at  z = 2.018 with hot-wire trace measured at  z = 1.9, shown in figure 
14(b), we can observe that the double-humped kinks observed in the experimental 
measurements are perhaps due to the secondary instability mechanism. 

Further support for the present results comes from a comparison of computed 
particle traces with the titanium tetrachloride smoke visualizations of Kohama 
(1984). Particle velocities are calculated based on (11) for the seven-mode 
fundamental resonance case with /Iz = 0.65, corresponding to the most-amplified 
secondary disturbance. A computational flow visualization is performed, in which a 
total of 2250 marker particles are initially randomly distributed over the horizontal 
plane z = 0.35, well below the core of the primary cortex. The marker particles are 
first advected in the absence of any secondary disturbance (el = 12 YO and e2 = 0 YO) 
to capture the effect of the primary disturbance in forming crossflow vortices. The 
particles are then advected in the presence of 5 'YO secondary amplitude. The resulting 
snapshot of the particle distribution at a later time is shown in figure 15 (a ) .  This plot 
is a plan view from above the disk and it includes two primary wavelengths across 
the crossflow vortex and three secondary wavelengths along the crossflow vortex 
(3h,, = 6 x / p 2 ) .  Here the black background represents the disk surface and the white 
'plus ' marks indicate the smoke particles. A relatively higher concentration of 
marker particles can be seen to form vertical patches at  the centre and at  the two 
(left and right) edges of this figure. These vertically oriented patches represent the 
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FIQURE 15. (a) Visualization of secondary instability with marker particles advecting in the 
computed flow field. The visualization is performed with an initial random distribution of 2250 
marker particles over a horizontal plane, z = 0.35. The marker particles are first advected in a flow 
field of mean flow plus 12 YO primary disturbance to capture the formation of the primary crossflow 
vortices. The particles are then advected in a flow field made up of mean flow, primary disturbance 
and an additional 5% secondary disturbance. The resulting top view of the marker particle 
distribution (indicated by white + marks) on a black background is shown. This plot includes two 
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accumulation of smoke particles in the region below the crossflow vortices due to the 
action of the primary mode (Kohama et al. 1991). The accumulation of marker 
particles in braids between these vertical patches is due to the secondary instability 
mode. The corresponding experimental flow visualization photograph of Kohama 
(1984, 1987)) is shown in figure 15(b). Accumulation of smoke below each crossflow 
vortex can be seen. It is interesting to note that the rib-like structures created by a 
travelling high-frequency secondary instability observed in the computed results can 
also be seen in the experimental photograph. It should be emphasized that this 
comparison is only qualitative owing to the approximations involved in the theory 
and limitations of the experiment. 

Based on the flow visualization, Kohama hypothesized that the effect of secondary 
instability is to  produce helical corotating vortices about the primary vortices. 
However, such a helical vortex structure is unlikely to  be present owing to the 
proximity of the primary crossflow vortex to the wall. I n  order to  understand the 
induced flow structure, first consider the effect of primary and secondary 
disturbances on the overall velocity and vorticity fields. Figure 16 shows the 
maximum-velocity components across the crossflow vortex (x), along crossflow 
vortex (y) and normal to the disk for the three cases: (i) mean flow alone, (ii) mean 
flow + 12 YO primary and (iii) mean flow + 12 YO primary + 5 YO secondary. Here, a t  
each vertical location the maximum velocity is computed in the (5, y)-plane. The 
corresponding three components of the vorticity distribution are shown in figure 17. 
Even a t  low amplitudes, the secondary disturbance significantly increases the 
velocity components perpendicular to the primary vortex axis. This in turn results 
in an increase in the vorticity component along the crossflow vortex. The two 
horizontal components carry more vorticity than the vertical component, but the 
major contribution to these horizontal vorticities comes from the normal gradients 
of the horizontal components of velocity (au/az and av/az) compared to the 
horizontal gradients of the normal velocity (aw/ax and aw/ay). 

I n  order to investigate the secondary vortex structure, we have plotted two- 
dimensional stream functions for the fundamental resonant secondary velocity field 
on a number of vertical planes a t  one time instant. Figure 18(u-e) shows contour 
plots of the stream function in the (x,x)-plane a t  five different locations along the 
primary vortex. The y-position of the vertical frame is given in the caption and the 
stream-function value a t  the centre of clockwise and anticlockwise rotating vortices 
corresponding to each position is marked a t  the top of the frame. At y = 0, relatively 
weak negative vortex can be observed close to the wall near x = +Ap and z = 0.6. This 
vortex gains strength and tilts up at an angle as the vertical plane travels down the 
primary vortex, in other words as y increases. In  the final frame, which is half a 
secondary wavelength away from the first frame, the centre of this negative vortex 
is at x=0.7AP and z =  1.0. Owing to the symmetry involved in the secondary 
expansion the sequence of frames in the second half of the secondary wavelength is 
the same as in the first half but with the vortices rotating in the opposite sense (frame 
five is the same as frame one, but for the sign change). Now following the positive 
vortex, i t  is clear that  the vortex continues to tilt upward, initially continues to  gain 

primary wavelengths across the cross-flow vortex and three secondary wavelengths along the cross- 
flow vortex. ( b )  Experimental flow visualization of secondary instability with smoke particles 
(Kohama 1984, 1987). In the experiment, titanium tetrachloride is coated on a black disk and the 
smoke pattern resulting from secondary instability is captured in the photograph. This picture 
includes one primary wavelength across the crossflow vortex and three secondary wavelengths 
along the crossflow vortex. 
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FIQURE 16. Maximum magnitude of the three components of velocity: (a) across the crossflow 
vortex, (b) along the crossflow vortex and (c) normal to the disk surface. At each z value the 
maximum velocity magnitude is evaluated over the horizontal (z, y)-plane. Results for the 
following three cases are presented : 0, mean flow only ; A, mean flow + 12 % primary disturbance 
and V, mean flow + 12 YO primary disturbance +5 YO secondary disturbance. 
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FIQURE 17. As figure 16 but for maximum magnitude of the three components of vorticity. 

strength but later weakens away. Thus following the entire length of a secondary 
vortex it can be seen that the vortex originates around x = 0.3hp and z = 0.6 (see 
figure 18 c), extends over one-and-a-half secondary wavelengths along and 0.8 
primary wavelengths across the primary vortex, and terminates around x = O.lhp 
and z = 2.4 (again see figure 18c). Intense regions of the secondary vortex are 
confined to the right-hand side of the frames; and the maximum intensity occurs at 
2 = 0.85hp and z = 1.8, close to the saddle point of the primary crossflow vortex (see 
figure 20). 

Further evidence for the vortical nature of the secondary disturbance can be 
obtained from two-dimensional stream-function plots in the (y, z)-plane at a number 
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FIGURE 18. Contour plots of the instantaneous stream function of the secondary disturbance in the 
(2, %)-plane at five different locations along the crossflow vortex. The sign of each vortex is marked 
in its core and the corresponding stream-function magnitudes are given at the top of each frame. 
This figure corresponds to a seven-mode fundamental resonance case with a secondary wavenumber 
of p2 = 0.65. (a) y = 0, ( b )  y = 0.125h,,, (c) y = 0.25A,,, (d) y = 0.375/\,,, (e) y = 0.5h,,. 

of locations across the crossflow vortex. The five frames plotted in figure 19 are for 
values of x 2 0.5. As in figure 18, the stream-function values, or the intensity of the 
vortices, for x 4 0.5 are relatively small and therefore not shown here. The above two 
figures indicate that the secondary instability results in alternating clockwise and 
anticlockwise rotating long vortices which are tilted up and oriented at an angle 
arctan (1.5h,,/0.8hP) = 44' to the crossflow axis. A schematic of the secondary 
vortex structure along the primary crossflow vortices is shown in figure 20. It should 
be noted that when superimposed on the base flow these secondary structures might 
appear as co-rotating to an observer. 

The secondary vortices are centred about the saddle point primary crossflow 
vortices. These long vortices extend over one-and-a-half secondary wavelengths, but 
the neighbouring vortices are separated only by half a wavelength. This results in 
three counter-rotating vortices in any vertical (x, z)-plane along the primary vortex 
(see figure 18). For this fundamental secondary resonance case, each individual wave 
in the secondary expansion of (1 1 )  travels along its wave vector with phase speed 
wzr/(@ + m z q z ) i .  Since each oblique wave travelling at  an angle 0 = arctan ( p , / n q )  
to the crossflow direction has a counterpart travelling at an angle 0 = arctan 
(bz/ - n q ) ,  the combined secondary disturbance travels along the primary vortex 
axis with phase speed wz/Bz .  The Lagrangian effect of these travelling tilted counter- 
rotating vortices is responsible for creating the braids observed in experiments. 

Countour plots of the stream function in the (x,z)-plane at  different locations 
along the primary vortex for the sub-harmonic secondary resonance case compare 
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FIGURE 19. As figure 18 but for the secondary disturbance in the (y,z)-plane a t  five different 
locations across the crossflow vortex : (a)  r = 0.5A,, ( h )  x = 0.625Ap. (c) x = 0.75A,, ( d )  x = 0.875Ap, 
( e )  x = l .OA,.  

FIGURE 20. Schematic of the vortical structure of the secondary disturbance, superimposed on 
primary crossflow vortices for the fundamental resonance case. These secondary vortices are 
counter-rotating and their axes are a t  an oblique angle to  the crossflow vortex axis and are also tilted 
upwards from z = 0.6 to  z = 1.4. Secondary vortices are centred over the saddle point of the 
primary crossflow vortices. For this fundamental resonance case adjacent columns of secondary 
vortices are corotating, whereas in the sub-harmonic resonance case adjacent columns are counter- 
rotating, and therefore will be shifted by half it wavelength along the crossflow vortex axis. 

well with the fundamental resonance case (figure 18), and therefore are not shown 
here. It appears that the basic structure of the secondary instability is the same in 
both cases. As before, following the positive and negative vortices from one frame to 
another it can be inferred that the secondary disturbances are again long upward- 
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tilting counter-rotating vortices oriented at an angle to the primary crossflow vortex. 
The difference between the fundamental and sub-harmonic cases lies in the fact that  
in figure 18 the stream function is periodic over A,, whereas in the subharmonic case 
the stream function is periodic over 2h,. The nature of the secondary expansion 
dictates that  the stream function over A,  < x < 2A, is just the same as that over 
0 < x 2 A ,  but with the sign reversed. Owing to this difference, for the fundamental 
resonance case adjacent secondary vortices sitting on top of saddle points of 
neighbouring crossflow vortices rotate in the same sense (figure 20), whereas in the 
subharmonic resonance case they rotate in the opposite sense. Another way to  look 
a t  this difference is that in the fundamental resonance case adjacent columns of 
vortices arc aligned and in the sub-harmonic case they arc shifted by +Ahys along the 
primary crossflow vortex. For the combination resonance case this shift will be a non- 
integer multiple of $Ahy8. 

6. Effect of nonlinear distortion 
Unlike in the two-dimensional boundary layer, the secondary instability in a 

crossflow-dominated three-dimensional boundary layer occurs only under significant 
modulation of the mean flow a t  larger amplitudes of the primary instability. At these 
primary disturbance amplitudes the shape assumption, which ignores the nonlinear 
self-interaction of the primary, starts breaking down. In  other words, a t  large values 
of el the mean flow distortion ( -  e:),  primary eigenfunction distortion ( -  e:) and 
higher harmonics of the primary disturbance ( -  6:) will have a significant influence 
on the secondary instability (Herbert 1983; Singer, Meyer & Kleiser 1989). If this 
influence of nonlinearity is solely quantitative, then the secondary instability results 
based on the shape assumption are relevant to our understanding of the qualitative 
nature of secondary instability. 

In order to assess the effect of nonlinearity, a direct numerical simulation of the 
nonlinear temporal evolution of the primary crossflow vortex is performed. I n  the 
numerical simulation the non-dimensional form of the governing equations (1 )  and 
(2) is solved by a spectral method with Fourier expansion in the horizontal directions 
and Chebyshev expansion, with an algebraic stretching, (9), in the vertical direction. 
A time-split method (Streett & Hussaini 1990) with a third-order Runge-Kutta 
scheme for the nonlinear and pressure terms and a Crank-Nicholson scheme for the 
viscous terms is used. Unlike in Streett & Hussaini, the pressure step is enforced after 
each state of the RungeKutta  scheme to reduce the splitting error. The parameters 
used in this simulation are R = 500, a,, = 0.328068, Pls = 0.0698504, which 
correspond to those used in the secondary stability analysis. Figure 21 shows the 
evolution of mean flow distortion, total primary amplitude, primary distortion 
amplitude, and the first and second harmonics of the primary with respect to  time. 
Here the total primary disturbance amplitude is defined as the maximum azimuthal 
velocity magnitude of the primary eigenfunction. The distortion of the primary 
disturbance is a measure of the deviation of the computed eigenfunction from the 
linear eigenfunction. The amplitude and phase of the linear eigenfunction are chosen 
so that its azimuthal component at its maximum value matches the distorted 
eigenfunction (Herbert 1983 ; Singer et al. 1989). Significant distortion and nonlinear 
saturation of the primary crossflow disturbance and its harmonics are evident. For 
example, when the total primary disturbance reaches a maximum amplitude of 
about 12.2%, the mean flow distortion is 10.9%, primary distortion is 8.3%, first 
harmonic is 6.0 YO and the second harmonic is 3.0 YO. 
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At selected instants during the course of the simulation, a base flow consisting of 
the distorted mean flow and primary eigenfunction along with its harmonics was 
tested for secondary instability. Multiple branches of positive growth for secondary 
disturbance were observed. Figure 22 shows a plot of secondary growth rate against 
wavenumber a t  four different times for the fundamental resonance case ; the 
corresponding total amplitude of the primary disturbance is also indicated in this 
figure. Even in the presence of significant nonlinear distortion a broadband 
secondary disturbance with significant growth rate can be observed. For comparison, 
the growth rate of the distorted primary crossflow vortex is 0.0021 a t  E ,  = 9.04 % and 
0.0017 at el = 10.89 YO. These growth rates of the distorted primary disturbance are 
nearly three times smaller than the undistorted linear primary growth rate of 0.0051. 
As the primary amplitude increases, the maximum secondary growth rate and the 
wavenumber corresponding to  the maximum growth rate increase. As before, the 
non-dimensional frequency (not shown here) increases linearly with the wavenumber 
and shows very little variation with primary amplitude. The wavenumbers 
corresponding to  the maximally amplified secondary disturbances from these base 
flows are comparable, thus the structure of the disturbance field is similar. The range 
of wavenumbers, and therefore frequency, over which the secondary growth is 
significant is also comparable for the distorted and undistorted cases. This qualitative 
agreement with the earlier results, which were based on the shape assumption, is 
remarkable considering the potentially significant effect of nonlinearity. 

Thus we are lead to believe that the qualitative results for the nature and structure 
of secondary disturbance obtained with the shape function assumption are valid. 
Although inclusion of nonlinearity affects the results quantitatively, the overall 
qualitative picture remains the same. Detailed understanding of the effects of 
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FIGURE 22. Secondary disturbance growth rate plotted against secondary wavenumber a t  four 
different amplitudes of primary disturbance. Secondary instability calculations are performed at 
R = 500 and nonlinearly distorted mean flow and primary eigenfunction along with the harmonics 
are used as the base flow. The wavenumber components of the primary disturbance are a1 = a,,, 
P1 = P1,. 

nonlinearity needs further study. As a final note, we point out that the relatively 
large amplitude of the primary instability required for secondary growth is not 
inconsistent with the experimental data of Wilkinson & Malik (1983) who showed 
that the crossflow vortices gained large amplitudes prior to breakdown to turbulent 
motion. 

7. Concluding remarks 
In two-dimensional boundary layers, Floquet theory of secondary instability has 

been shown (Herbert 1984, 1985, 1988) to be very effective in explaining the 
transition process beyond classical linear stability theory. Here this parametric 
secondary instability analysis has been extended to understand the nature of 
secondary instability process in a prototype three-dimensional boundary layer on a 
rotating disk. 

In spite of the limitations of the present shape assumption, a number of interesting 
results can be inferred from the above secondary instability analysis. The underlying 
structure of the secondary instability is a pair of long counter-rotating travelling 
vortices tilted upward and inclined at an angle of about 44' to the primary crossflow 
vortices. Computed results based on this secondary flow structure compare 
qualitatively with hot-wire measurements and flow visualizations. 

An increase in the growth rate and unstable bandwidth of the secondary 
instability with increasing primary amplitude and Reynolds number has been 
observed. The secondary frequency shows nearly linear dependence on secondary 
wavenumber and is also independent of both the primary amplitude and Reynolds 
number. This indicates an almost constant phase velocity for the secondary 
disturbance. 



346 S.  Balachandar, C. L.  Streett and M .  R. Malik 

Stationary primary crossflow vortices of shorter wavelength were found to be 
increasingly susceptible to secondary disturbances. On the other hand, such short- 
wavelength primary disturbances are not the most amplified primary disturbances. 
A rational approach to the transition problem should include a study of receptivity 
in order to obtain the initial disturbance spectrum based on global parameters such 
as surface roughness and free-stream disturbance level. The initial evolution of this 
disturbance spectrum can then be followed by linear stability theory. When most of 
the primary disturbance energy is concentrated in a narrow wavenumber band, 
transition is likely to  happen via a distinct secondary instability mechanism. Floquet 
theory can be used to provide qualitative features of this secondary phenomenon. 

The authors are grateful to Drs M. Y.  Hussaini, Y. Kohama and A. Kumar for 
their valuable comments, suggestions and support of this work. The work of S. B. and 
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